Commercial Opportunities for the Fusion Energy Ecosystem

How entrepreneurs, investors, and researchers can build key products and services for tomorrow’s fusion industry

- Fusion materials
- Components & consumables
- Subsystems
- Software, services & facilities
- Financial & human capital
Commercial Opportunities for the Fusion Energy Ecosystem

Fusion materials

Plasma-facing materials
Engineer materials that can withstand a fusion environment on commercial timescales.

Structural materials
Provide advanced structural materials needed to construct vacuum vessels, molten salt blankets, and piping.

Superconducting materials
Develop electromagnets that maintain their performance under irradiation.

Tritium permeation barriers
Improve the industry’s safety and productivity by preventing leakage of tritium across components.

Components & consumables

Enriched lithium supply
Provide lithium for fusion blankets with a higher concentration of lithium-6.

Radiation-hard sensors and electronics
Deliver sensors and maintenance systems that can withstand irradiation to enable plasma monitoring and control.

Vacuum pumps
Provide durable and tritium-compatible vacuum pumps for plasma exhaust.

Isotope and element selectivity
Commercialize new technologies to separate hydrogen isotopes and other species in pumping particle streams.

Tritium marketplace
Manage the production, storage, transportation, and trading of tritium across national boundaries.

Molten salt supply
Supply and manage challenging molten salts like FLiBe for fusion blankets.

Solid-state plasma heating components
Deliver next-generation transistor chips for plasma heating.

Subsystems

Tritium fuel cycle
Provide a fuel cycle subsystem that achieves tritium self-sufficiency and minimizes tritium inventories.

Integrated plasma heating and current drive actuators
Make more cost-effective, high-power, high-duty cycle, high-efficiency plasma heating and current drive actuators.

Cryogenics
Modernize cryogenic cooling systems to complement the efficiency of new high-temperature superconducting fusion magnets.

Heat exchangers
Design heat exchange subsystems capable of withstanding the effects of radiation and high temperatures.

Thermal storage
Enable fusion plants to work seamlessly within a grid populated by other power sources by developing integrated thermal energy storage systems.

Financial & human capital

Third-party standards & ratings for fusion milestones
Improve confidence of capital markets and lend credibility to private fusion companies by providing standardization and rating services.

Workforce training and recruiting
Solve the challenge of human capital with fusion industry training and recruitment tools.

Legal services for fusion developers
Streamline legal and administrative processes for fusion companies.

Community engagement and communications
Tell the story of fusion power and shape public perception through savvy engagement and communications strategies.

Subsystems

Materials testing
Provide access to facilities that approximate a fusion environment to enable testing and qualification of candidate materials.

Commercial-grade plant design software
Create integrated, easy-to-use software to dramatically simplify the task of commercial teams developing new fusion plants.

Robotic maintenance
Develop robust robotic tools to replace plasma-facing components and perform system maintenance.

Liquid waste technologies
Improve fusion’s sustainability with liquid waste management and disposal systems capable of removing tritium.

Component qualification and integrity testing
Taking cues from the existing aerospace and nuclear fission industries, create a robust market for rapid compound stressor component qualification and testing.

High-precision engineering and component manufacturing
Exploit the production potential of additive manufacturing to construct intricate components out of metal alloys.